Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons.

نویسندگان

  • Aryn H Gittis
  • Sascha du Lac
چکیده

Sodium currents in fast firing neurons are tuned to support sustained firing rates >50-60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na current kinetics and voltage-dependent properties were compared in two classes of MVN neurons with distinct firing properties. Non-GABAergic neurons (fluorescently labeled in YFP-16 transgenic mice) have action potentials with faster rise and fall kinetics and sustain higher firing rates than GABAergic neurons (fluorescently labeled in GIN transgenic mice). A previous study showed that these neurons express a differential balance of K currents. To determine whether the Na currents in these two populations were different, their kinetics and voltage-dependent properties were measured in acutely dissociated neurons from 24- to 40-day-old mice. All neurons expressed persistent Na currents and large transient Na currents with resurgent kinetics tuned for fast firing. No differences were found between the Na currents expressed in GABAergic and non-GABAergic MVN neurons, suggesting that differences in properties of these neurons are tuned by their K currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similar Properties of Transient, Persistent, and Resurgent Na Currents in GABAergic and non-GABAergic MVN neurons

Sodium currents in fast firing neurons are tuned to support sustained firing rates > 50-60 Hz. This is typically accomplished with fast channel kinetics and the ability to minimize the accumulation of Na channels into inactivated states. Neurons in the medial vestibular nuclei (MVN) can fire at exceptionally high rates, but their Na currents have never been characterized. In this study, Na curr...

متن کامل

Firing properties of GABAergic vs. non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents Abbreviated title: Balance of potassium currents in MVN neurons

Neural circuits are composed of diverse cell types whose firing properties reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely dissociated n...

متن کامل

Firing properties of GABAergic versus non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents.

Neural circuits are composed of diverse cell types, the firing properties of which reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely disso...

متن کامل

Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice.

In some central neurons, including cerebellar Purkinje neurons and subthalamic nucleus (STN) neurons, TTX-sensitive sodium channels show unusual gating behavior whereby some channels open transiently during recovery from inactivation. This "resurgent" sodium current is effectively activated immediately after action potential-like waveforms. Earlier work using Purkinje neurons suggested that the...

متن کامل

Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents.

To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2008